昨今の半導体ブームを見て早速飛びついた議員連盟が結成されたのは半導体産業がいかに重要ということではなく、米国のバイデン大統領が半導体製造強化に520億ドルの予算を計上したという事実にプレッシャーを感じたからだ。つまり外圧である。議員連盟は過議員連盟が結成されたのは半導体産業がいかに重要ということではなく、米国のバイデン大統領が半導体製造強化に520億ドルの予算を計上したという事実にプレッシャーを感じたからだ。つまり外圧である。議員連盟は過去にもたくさんできては消えを繰り返してきた茶飯事であり、現在ある議員連盟だけでは5つも6つもある。半導体はその一つにすぎない。
ただし、議員連盟に期待する気持ちもある。霞が関のタコつぼ的な各省庁の組織ではデジタル化が遅れ、ワクチン接種も遅れ、組織が硬直化して正しい判断が出来なくなりつつあるからだ。半導体の政府援助を台湾や米国レベルで見ると、1年度の補助金ではなく税制優遇や補助金など各企業に援助することが多い。しかし、これまで経済産業省は1企業のために援助はしないと公言してきた。コンソシアムなら支援してきたが、この国家プロジェクト方式はことごとく失敗した。
経産省は、今回TSMCという1企業を支援することを決めた。しかし、税制優遇や研究開発支援は財務省の問題であり、アンタッチャブルだという姿勢を今も崩していない。だからこそ、世界と同じ土俵で半導体企業を支援しようとすると、各省庁に横グシを入れられるように変えるしかない。各省庁に横グシを入れられる立場にいるのは、議員と内閣だけである。内閣が期待できそうにないから、議員にかすかな期待を寄せるのである。米国でさえ、バイデン大統領を動かしたのは、超党派の議員が半導体産業のサプライチェーンの世界的変化を訴求し、半導体製造が国の安全保障にとって最重要であることを訴えたからだ。
デジタル化の3大要素はコンピュータ、通信、半導体
半導体はIT(デジタル化)の3大要素の一つである。すなわち、コンピュータ、通信、そして半導体というITの3大要素はいずれが欠けても成り立たない。通信は今やITインフラの一つであるから総務省管轄で大事にされているものの、経済産業省が管轄のコンピュータと半導体は残念ながら重要視されてこなかった。ITやそれを支える要素のことを最近ではデジタル化と呼んでいるが、そのテクノロジーがエレクトロニクス技術であることに変わりはない。ただし、言葉として、半導体やエレクトロニクス、電子というフレーズは古い、と思われているのが現状である。
2~3年前はIoTやCPS(サイバー・フィジカルシステム)という言葉がはやっていたが、IoTシステムそのものがデジタルトランスフォーメーション(DX)のテクノロジーである。上っ面の言葉だけが変化しても、中身のテクノロジーは実は70年以上も変わっていない。70数年前に、ITの3大要素は生まれた。1947年にトランジスタ動作の発見、1946年に電子式コンピュータの発明、1948年クロード・シャノンによるデジタル通信の限界理論の提言があった。これらの3大要素は別々に生まれたものの、少しずつ重なり始め1971年Intel社がマイクロプロセッサとメモリを発明した当時、それらはオモチャだと揶揄されたが、ムーアの法則と共に集積度が上がり、半導体技術でコンピュータの性能を上げ消費電力を下げられることが可能になり、半導体とコンピュータはつながった。さらにデータを転送するためのデジタル通信が通信基幹システムだけではなく、携帯電話にも広がってきたことで半導体とコンピュータと通信がつながってきた。
半導体製造だけを勉強しても無駄
こういった動きを認識していなければ半導体の重要性は認識できないのである。小学校や中学校から半導体の授業をやるべきだという意見はあるが、それだけではテクノロジーの本質にはたどり着けない。むしろSTEM(Science, Technology, Engineering, Mathematics)教育が重要だと述べると、Facebookなどで多くの大学関係者から賛同を得た。半導体製造だけを学んでもそれでは未来に向かえない。むしろ、物理や化学、生物学、医学などをしっかりと身に着け、数学を駆使してさまざまな問題を解いていく方が、融通が利く。物理学をしっかり学んでいれば量子コンコンピュータや量子アニーリング、量子暗号技術だって理解できる。また数学をしっかり身に着けていれば、AI(機械学習やディープラーニング)も理解できる。STEM教育で、これらをしっかり身に着けておけば半導体を理解することは難しくない。
半導体議員連盟に期待するのはどうかな、と思ったのは、最高顧問に就任された麻生財務大臣が、学校で微分・積分を学んで何の役に立つのか、やめていいのではないか、という発言をされたことだ。日本を支える製造業でむしろ微分・積分を使わない先端企業があるなら教えてほしいくらいだ。製造業はどこでも微分・積分は常識的に使う。半導体でさえ、MOSトランジスタの動作を理解しようとすれば、ポアソン方程式と電流連続の式と呼ばれる微分方程式を解かなければならない。微分・積分の考え方を知っていれば、通信技術での圧縮や伸長でよく使われるDCT(離散的コサイン変換)やフーリエ変換を理解したり、DSP(デジタル信号プロセッサ)を理解したりすることも容易だ。逆に知らなければ、テクノロジーでますます世界からも置いていかれることになる。中国やインド、東南アジアで優秀なエンジニアは誰でもみんなSTEM教育の重要さを理解している。つまり、日本はこれらの国から遅れてしまう危険があるのだ。
また、小中高学校から教えるべきは、暗記ではなく、微分・積分や行列演算、物理法則、化学法則などの原理と考え方である。考え方さえしっかり身についていれば、年を重ねてもそれらの原理を理解できるから、将来どのようなテクノロジーが生まれてきても十分理解できる。半導体製造だけを学んでも、量子力学の本質を理解していなければ、量子の世界だけではなく、固体の量子論、すなわち半導体物理や物性物理の理論も身につかない。文部科学省に期待するのは、STEM教育が日本のモノづくりを強化する基本であることを理解してくれることである。
からの記事と詳細 ( 半導体を含めた日本の製造業を強化するならSTEM教育を!(津田建二) - Yahoo!ニュース - Yahoo!ニュース )
https://ift.tt/35Ta86d
No comments:
Post a Comment